Introduction:
The Semi-Integral control module provides local control to the WE or WEM series electric actuators. The Semi-Integral module consists of two selector switches and five LED indicator lamps. The WE series is for two position control and the WEM series utilizing the PCU servo card is for proportional control. The WEM can be configured to fail either in place, clockwise or counter-clockwise on loss of control signal.

Storage:
1. Keep conduit entries plugged
2. Store in a dry environment

Manual Operation:
Pull the lever towards the handwheel to engage the manual override. If the lever does not stay engaged, pull the lever again and rotate the handwheel at the same time. The direction of output is casted on the handwheel. The manual override will automatically disengage when the electric power is turned on and the motor starts to turn. PLEASE DO NOT TRY TO PULL OR FORCE THE LEVER TO DISENGAGE THE MANUAL OVERRIDE, THIS CAN DAMAGE THE LEVER SHEAR PIN.

Limit Switch Setting:
Closed Position
The limit switches can be set by rotating the actuator to the closed position with the manual handwheel and rotating the top two cams clockwise until the switches just trips. Make sure you tighten the 4mm Allen head screw holding the cam after making the adjustments.

Open Position
To adjust the open position, manually rotate the actuator to the desired opened position with the manual handwheel and rotate the bottom two cams counter-clockwise until the switches just trips. Make sure you tighten the 4mm Allen head screw holding the cam after making the adjustments.

Torque Switches:
The torque switches are set by the factory for the rated torque output. Adjustments to the torque switches can cause damage to the motor and gears.

Mechanical Stops:
The mechanical travel stops are for proper positioning during manual operation and for valve / damper protection in case of electrical malfunction.

Loosen jam nuts for both the CW and CCW travels stops. Manually operate the actuator CW until the CW limit switch trips. Then turn the CW travel stop bolt (right) clockwise until the bolt touches the worm gear. Turn the travel stop bolt counter clockwise three turns and tighten the jam nut.

Manually operate the actuator CCW until the CCW limit switch trips. Then turn the CCW travel stop bolt (left) clockwise until the bolt touches the worm gear. Turn the travel stop bolt counter clockwise three turns and tighten the jam nut.

Jamming:
If the actuator travels into a mechanical travel stop, the worm gear will jam. The actuator cannot be reversed electrically or manually until the mechanical travel stop bolt is loosened. Loosen the jam nut on the mechanical travel stop bolt, and then turn the bolt counter-clockwise three turns. The actuator now can manually operate once the pressure is off the worm gear. The mechanical travel stops should be recalibrated per the manual if jamming occurred.
Wiring:
The wiring terminations are per the wiring diagram included with each package. The actuator should be wired and grounded in accordance with local and national electrical codes. Conduit should be sealed at the actuator housing to keep water and moisture from entering the actuator. The compartment heater should be energized continuously to reduce moisture buildup.

The WE & WEM series actuators with Semi-Integral module are provided with a “STOP” contact. The “STOP” contact must be closed by either a switch or jumper for the actuator to operate. The actuator will not move with a remote signal when this contact is open.

The WEM series actuators with Semi-Integral module are also provided with an “AUTO” contact. The “AUTO” contact must be closed by either a switch or jumper for the 4-20mA input to control the actuator. The actuator can be controlled with the open and close contact when the “AUTO” contact is open.

Local Control:
Local control consists of two magnetic selector switches and 5 LED indicators. Selector switches are non-intrusive and provides perfect sealing against water.

Mode Selector switches
The selector switch on the right side of the local control decides the operating mode, and has three modes of Remote, Stop and Local. If the mode is remote, the actuator would work according to the incoming control signal (discrete or analog) from remote source. If the mode is on stop, all command signals, regardless of local or remote is ignored and only the display status is being updated. If the mode is on local, the actuator works according to the signal generated by this local command of either close or open.

Command Switch
Command switch is spring return type, it will automatically return to neutral position after generating either open or close command. Two type of operation is possible based on the settings of the internal DIP switches behind the face plate.

| Inching Type: | Actuator works only when command signal is present. |
| Holding Type: | Actuator continues to runs until getting a stop command or trips the end of travel switch. |

Display

<table>
<thead>
<tr>
<th>LED Name</th>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER</td>
<td>White</td>
<td>External power is present</td>
</tr>
<tr>
<td>REMOTE</td>
<td>Blue</td>
<td>Local / Remote selector switch is on remote control</td>
</tr>
<tr>
<td>FAULT</td>
<td>Flashing Amber</td>
<td>Torque switches have tripped to protect motor</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Green, Flashing</td>
<td>Actuator is in the full closed position</td>
</tr>
<tr>
<td>OPEN</td>
<td>Red, Flashing</td>
<td>Actuator is in the full open position</td>
</tr>
</tbody>
</table>
Configuration:
There are DIP switches on the back of the local control face plate. The (4) Allen head bolts will need to be removed to access that back of the face plate.

DIP Switch #1, “Holding / Inchng

“ON”
Holding Type - When getting a signal to change position, the actuator continues to run until getting a stop command or trips the end of travel switch.

“OFF”
Inching Type - When getting a signal to change position, the actuator continues to run only when receiving the signal. The actuator only moves when receiving a signal.

WEM with PCU Proportional Control (Does not apply to the WE series two position control)
The WEM series actuators with Semi-Integral module have the PCU servo card for proportional control. The servo card can accept and output a few analog control signals. The servo card can also be configured for a specific fail position on loss of input signal. The servo card always uses the motor control end of travel limit switches as the starting and ending points of travel.

<table>
<thead>
<tr>
<th>LED</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>Power is present / normal operation</td>
</tr>
<tr>
<td>Blinking Blue</td>
<td>Auto calibrate is running</td>
</tr>
<tr>
<td>Green</td>
<td>Actuator is in the full closed position</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>Actuator is traveling towards the close position</td>
</tr>
<tr>
<td>Red</td>
<td>Actuator is in the full open position</td>
</tr>
<tr>
<td>Blinking Red</td>
<td>Actuator is traveling towards the open position</td>
</tr>
<tr>
<td>Yellow</td>
<td>Servo card is in manual mode</td>
</tr>
<tr>
<td>Blinking Yellow</td>
<td>Fault, no input signal, input polarity is wrong, feedback potentiometer need to be set</td>
</tr>
</tbody>
</table>

Input Signal:
The input signal can be selected by changing the DIP switches position based on the below chart. The standard from the factory is 4-20mA DC.
Auto Calibration:

The servo card always uses the motor control end of travel limit switches as the starting and ending point of travel. The zero and span adjustments are made with the motor control end of travel limit switches. Adjust the two motor control end of travel limit switches to the desired opened and closed position.

Once the motor control end of travel limit switches are set and power and control signal has been applied, push the red button on the servo card to start the auto calibrate function. The Blue LED will blink indicating the auto calibration function is in process. The actuator will cycle back and forth setting the min and max input signal to the full open and closed positions.
Fail Position:
The servo card can be setup to drive the actuator to a safe position on loss of signal. The choices are fail in place, fail closed, or fail open. The fail position can be selected by changing the #1 & #2 DIP switches position based on the below chart.

![DIP Switches](image1)

Fail Close
Fail Open
Fail In Place

Full Open / Full Closed:
This option adjusts the full closed mA setting from 4mA to 4.3mA and the full open from 20mA to 19.7mA. This optional setting insures the actuator will travel to the full open and full closed position with a standard 4-20mA input signal. This optional feature can be turned on or off by changing the #3 DIP switch, based on the below chart.

![DIP Switches](image2)

4mA Full Closed / 20mA Full Open
4.3mA Full Closed / 19.7mA Full Open

Manual Calibration:
It is recommended to use the auto calibration procedure instead of the manual calibration. The manual calibration is only required when the open and closed positions are offset from the motor control limit switches. DIP switch #4 can be used to manual set the closed and open position between the two motor control limit switches. The closed setting can be adjusted from the closed motor control limit switch to approx 8mA. The open setting can be adjusted from the open motor control limit switch to approx 16mA. It is recommended performing this procedure after running the auto calibration.

After performing the auto calibration, the actuator will travel from 0 Degs (4mA) to 90 Degs (20mA). If the desired closed position is at 10 Degs and the desired open position is at 80 Degs then follow the below procedure.

- Apply 5.78mA to the servo card, the actuator will move to 10 Degs
- Turn DIP switch # 4 on and push the zero button.
- The servo card acknowledges that position as full closed and transmits 4mA
- Turn DIP switch # 4 off

- Apply 18.22mA to the servo card, the actuator will move to 80 Degs
- Turn DIP switch # 4 on and push the span button.
- The servo card acknowledges that position as full open and transmits 20mA
- Turn DIP switch # 4 off

4mA will now drive the actuator to the 10 degs position and 20mA will drive the actuator to 80 Degs position.
Reverse Acting:
DIP switch # 5 is used for changing from (4mA closed / 20mA open) to (4mA open / 20mA closed). It is recommended to rerun the auto calibration after making a change to DIP switch #5.

Output Signal (Transmitter)
The output signal can be selected by changing the DIP switches position based on the below chart. The standard from the factory is 4-20mA DC. The zero and span can adjusted by turning the two 10 turns potentiometers on the servo card.

Delay Time / Deadband:
There are two single turn potentiometers, one is labeled Time and the other is DB. It is recommended leaving the setting for both potentiometers at the factory settings unless a problem in the field occurs.

The Delay Time is factory set at #4 (800msec). The servo card will change actuator position after the 800msec has expired. This setting is to prevent continuous movement due to noise in the incoming signal. When the Time potentiometer is turned clockwise the delay gets longer.

#0 = 50msec, #1 = 200msec,
1 thru 4 steps (step number X 200 msec)
5 thru 15 steps (step number X 500 msec)

A deadband is an area of a signal range or band where no action occurs (the system is dead). When the DB potentiometer is turned clockwise the deadband gets larger and requires a larger input signal change to get movement. When a tighter control is required (finer resolution) turn the DB potentiometer counter-clockwise. Be careful when turning counter-clockwise to avoid hunting. If hunting occurs, it can cause premature actuator failure. The DB (Deadband) is factory set at #4 (0.27mA). It will take approx 0.27mA increase / decrease to get movement.
Manual operation:
The actuator can be operated with two buttons on the servo card. In order to operate manually with the servo card, press both buttons (Zero & Span) at the same time for 2 seconds. The Yellow LED will come on indicating manual mode. The Zero (black) button will drive the actuator closed and Span (gray) button will drive the actuator opened. The servo card will return to normal mode after 15 seconds of inactivity.